
J .  Fluid Mech. (1982), vol. 125, p p .  463474 

Printed in Great Britain 
463 

Buoyancy-thermocapillary instability : the role of 
interfacial deformation in one- and two-component fluid 

layers heated from below or above 

By J. L. CASTILLO AND M. G. VELARDE 

Departamento Fisica Fundamental - U.N.E.D., Apdo Correos 50487, Madrid, Spain 

(Received 26 March 1982 and in revised form 23 June 1982) 

Energy stability theory has been used to study BBnard convection in one- and 
two-component horizontal fluid layers heated from below or above when there is a 
deformable upper surface. To a first approximation in the crispation number, we 
provide sufficient conditions for stability of the motionless state of the layer, and 
delineate regions of possible subcritical instability. 

1. Introduction 
Surface-tension forces play a major role in a low-gravity environment, and new 

impetus in analysing their influence on materials processing stems from space 
programmes. Scientifically and technologically significant results are expected from 
low-gravity melt processing in the near future. Metal-melting experiments in 
SKYLAB (Bourgeois & Brashears 1977) gave evidence of surface-tension-driven 
cellular convection, and it is generally well established that Marangoni-BBnard 
effects are responsible for triggering steady and time-dependent flows in crystal-growth 
melts with free surfaces (Schwabe 1981). On the other hand there is growing evidence 
of the role played by mere p.p.m. impurities in drastically affecting BBnard-Marangoni 
convection (Coriell et al. 1980 ; Hurle 1977). Recently, double-diffusive convection 
with free surfaces has been highlighted as one of the problems relevant to  space 
processing of liquids under thermal constraints (MalmBjac et al. 1981). Moreover, 
interface stability can be a measure of material purity (Fisher & Kurz 1980; Coulet, 
Billia & Capella 1981). 

I n  a recent paper, Davis & Homsy (1980) have studied the role of interfacial 
deformation in the stability of a horizontal fluid layer heated from below and open 
to the ambient air They found that a deformable interface leads to  a stabilization 
relative to the case of a planar interface. I n  the present paper we extend some of their 
results by considering a fluid layer heated from above (negative Rayleigh number 
R) and a fluid where the density depends on two variables such as temperature and 
impurity (or solute) concentration (Shir & Joseph 1968 ; Schechter, Velarde & Platten 
1974). I n  our study, solutal and thermal effects can be described with the same 
analytical theory with the only exception that the solutal Marangoni number or 
elasticity number E does not generally follow the sign of the corresponding solutal 
Rayleigh number R,. I n  contradistinction to  the thermal Marangoni number M ,  the 
elasticity number can have either sign, positive or negative, for a given sign of the 
solutal Rayleigh number. Thus, the results reported here extend on the one hand the 
work of Davis & Homsy (1980) to binary mixtures, and on the other they extend 
the work of Shir & Joseph (1968) to include capillary phenomena. We discuss the 
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competition between the two Marangoni numbers, with emphasis on the case of 
vanishing gravity, as this should be the most relevant limiting case in experiments 
aboard spacecraft. 

An interesting feature of binary mixtures is the occurrence of instability in liquid 
layers even when the vertical density distribution is statically stable (Turner 1973), 
no matter how small a gravitational field exists. This may be the case when the layer 
is heated from above and a solute less dense than a solvent accumulates a t  the bottom. 
An instability is possible owing to the large disparity between the thermal and mass 
diffusivities in the mixture. A parcel of fluid displaced from the bottom upwards 
rather quickly warms up, but scarcely changes its solute concentration. Thus it still 
tends to  rise and convection sets in provided that  the viscous forces are overcome 
(Turner 1973; Velarde 1977; Velarde & Normand 1980). 

In  the present paper we discuss the possibility of steady and time-dependent 
convection (overstability) and subcritical instability when a binary liquid mixture 
is subjected to thermal constraints and there is a free surface open to the ambient 
air. 

2. Two-dimensional buoyancy-thermocapillary problem 
We shall remain as close as possible to the formulation of the problem given by 

Davis & Homsy (1980). We shall use the following notation (figure 1): d is the mean 
distance between two infinite horizontal surfaces; the lower surface is a rigid heat- 
conducting plate at constant temperature, while the upper surface is free, and open 
to the ambient air on which the heat flux is prescribed. These surfaces bound an 
incompressible, Newtonian and Boussinesq (PBrez Cord6n & Velarde 1975 ; Velarde 
& PBrez Cord6n 1976) liquid of mean density p,  viscosity p and kinematic viscosity 
v = p/p.  The acceleration due to gravity is g ;  a and y are respectively the coefficients 
of thermal and solutal expansion; x and D are respectively the thermal and mass 
diffusivity of the liquid mixture. The ambient air plays a passive role and it is assumed 
to have negligible density and viscosity. The free surface can be deformable and has 
no uniform temperature distribution. 

We use a system of Cartesian coordinates whose origin lies in the rigid plate and 
whose dimensionless coordinates x and z are scaled on d.  We thus consider two- 
dimensional fields. The velocity vector v = (a, w), the temperature @, the mass 
fraction of one of the components (one, say, the solvent or the solute and the heavier 
in the binary mixture) r, the time t ,  the pressure p ,  and the surface tension cr are 
referred to scales X/d,  AT,  AN, (with Ni = pi /p ,  i = 1, 2, and N , + N ,  = l ) ,  d2/X,  
p x / d 2 ,  go,  where AT is the temperature excess or defect a t  the bottom compared with 
the top and cro is the mean surface tension on the free surface. Under the above 
assumptions and conventions, the following dimensionless groups are introduced : 

thermal Rayleigh number 

solutal Rayleigh number 
- ygd3ANl R, = 

Dv ’ 

V Prandtl number p = -  
X ’  
D (inverse) Lewis number L = -  
x ’  
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z. w 
A ’  

z = I + q(x, t )  

XO 0 

FIGURE 1. An exaggerated view of the interfacial deformation in a single cell. Boundary conditions 
are taken at z = 0 and z = 1 +T(z, t ) .  

C = -  PX crispation or capillary number 
u o d ’  

Bond number 

thermal Marangoni number 

au dAN, 
solutal Marangoni or elasticity number E = - - - 

(aN,> pD ’ 

R, R,, M and E are dimensionless measures of the thermal constraints operating 
in the fluid layer. These constraints induce positive or negative buoyancy and 
variations of surface tension, thus leading to surface tractions and eventual deform- 
ation of the open interface. The capillary number C measures the degree of 
deformability, and the limit of vanishing capillary number reduces the problem to 
a plane boundary, which is the case of an interface with mean surface tension very 
large. I n  this note we focus on the role of C to a first approximation. 

We locate the liquid-air interface S(t)  by writing 

S( t ) : z  = l+q(x , t ) .  ( 1 )  

For a sufficiently smooth general two-dimensional deformation of the interface, the 
unit outward normal vector n to S has the form 

and the unit tangent vector t to S 

where N = ( 1  + (a7/ax)2}k Thus the curvature K(7)  is 

1 a Z r  
K ( 7 )  = --. 

N3 ax2 
The stress balance a t  the open interface in compact notation is 

(4) 

G K 
C 

7..n. =--{7+$4y2} ni+-{1-MC(B-7)-ECL (r-7)) ni 
23 3 c 

- t i ( t .V){M(B-v)+EL (T-7)) ( i , j  = 1 ,  2), ( 5 )  
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where A = aAT- yAN, is the group that must remain small and with small parts 
for the Boussinesquian approximation to be valid (Perez Cord6n & Velarde 1975): 
A is not independent of the dimensionless groups introduced earlier. Rather, we have 
A = {R+ R,L} GIG, which must be vanishingly small for given R and R,. The stress 
tensor of the liquid is 

Sij is the Kronecker delta. The summation convention over repeated indices is 
assumed. 

We assume that the liquid at the interface moves with the interface's velocity, i.e. 
the kinematic boundary condition a t  the open interface takes the form 

3 = Nuin< 
at 

on z =  l + T .  

As indicated earlier, we assume that the heat flux is prescribed on the open 
interface, i.e. the interface is a rather poor heat-conducting boundary. We have 

l - N  
(n.V)e = - 

N .  (7)  

Thus the value of this flux is fixed a t  the value in the motionless steady state. For 
solute transport we also prescribe the value of the flux. An alternative condition would 
be to prescribe the value of the salt concentration at the interface, but for simplicity 
we shall not consider this case here. We take 

1-N 
N 

(n.V)r =- 

On the rigid lower plate, the temperature and salt concentration are fixed: 

v i = 8 = T = 0  on z = O .  (9) 

Finally, the equations for the disturbances upon the motionless steady state of the 
bulk liquid enclosed in the region 0 < x < 1 +y(x ,  t ) ,  - co < x: < co, with t 2 0, are 

ar - + ( v . v )  r = Lv2r+w, 
at 

v . v  = 0, 
where ki = (0, l ) i .  

3. Energy stability analysis 
Energy theory (Davis 1969; Davis & Homsy 1981; Joseph 1976; Shir & Joseph 

1968; Normand, Pomeau & Velarde 1977) provides sufficient conditions for stability 
of a given state of the fluid layer. It amounts to the construction of a suitable 
Lyapunov functional for arbitrary disturbances upon the initial state of the fluid 
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layer. We define the integral over the free surface of a quantity f as follows: 

where ds is an  element of arclength along 8(t), and X o ( t )  is the arclength of the free 
surface in one period in x. Then the ‘volume’ integral (in two dimensions) of a 
quantity over one such period is 

l + T ( X , t )  

(f) = s” f ( x ,  z ,  t )  dz dx. (12) 
0 0  

Now we define the Lyapunov energy functional as follows: 

Note that 171 > 3 / A  for the Boussinesquian approximation to be valid. Then the 
fourth term on the right-hand side is positive, and the same property applies to E 

for non-negative h and A. The latter parameters are the linking parameters of the 
functional (Joseph 1965, 1976). Their choice is dictated by convenience to  obtain the 
largest parameter region of stability. Our choice here departs from that of Davis & 
Homsy (1980), as we do not introduce the Rayleigh number in the Lyapunov energy 
functional. This procedure allows a straightforward discussion of positive and 
negative Rayleigh numbers. On the other hand the choice of the surface-integral term 
in (13) with the factor G permits an elimination of this parameter without, however, 
setting i t  to zero, thus overcoming the difficulties with zero-wavenumber modes a t  
G = 0 (see e.g. Xcriven & Sternling 1964; Smith 1966; Velarde 1977). - 

dt. 
S - = 0  

dt ’ 

We search for solutions to 

where S accounts for an arbitrary variation of the rate of evolution of E with, however, 
the constraint that  quantities have periodicity in x, there is conservation of volume 
elements (1%~ = O ) ,  incompressibility, and the boundary conditions are satisfied a t  
the respective boundaries. Let p and 2p(x,  z ,  t )  be the relevant Lagrange multipliers. 
Then we pose the following variational condition : 

From (14)  we get the corresponding Euler-Lagrange equations together with their 
natural boundary conditions. As we are interested in the role played by the crispation 
number, i.e. by the deformation of the interface, we assume that all fields have a series 
expansion in C. I n  compact form we have 

(vi, 0, r, q) = ( v p , o ( o ) ,  n o ) ,  q ( o ) )  + (vp, w, r( l ) ,p)  c+ o(c2) (15) 

together with a similar expansion for R ,  R, ,  M or E.  Then the Euler-Lagrange 
equations to the lowest-order approxmation are 
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FIGURE 2. For caption see facing page. 
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together with the boundary conditions 

On z = 1 ,  we have the natural boundary conditions 

Note that when C = 0 we have 7 = 0 and there is no deformation of the interface. 
The solutions can be sought in the form f(z) exp (iax), where a is a Fourier wave- 
number. We have 

( 6  \ 

O ( O )  = Z Ri exp qi z + R,{exp az - exp - az} exp iax, (19)  
if-1 1 

where pi are the roots of the polynomial equation 

( ~ ~ - U ~ ) ~ + # ( A + A )  a2 = 0. (201 

Similar expressions are obtained for the remaining fields. Note that the R, term 
does not appear in single-component liquid layers. 

4. The role of the crispation number: discussion of results 

posed in § § 2  and 3 yields 
To a first-order approximation in the crispation number the solution of the problem 

FIGURE 2. (a )  Marangoni versus Rayleigh number for a plane open interface (case C = 0). Solid and 
broken lines correspond respectively to linear and energy stability analyses. The region between 
the two lines corresponds to the possibility of subcritical instability. Note that the diagram 
corresponds either to the single-component BBnard problem heated from below or above, or to an 
isothermal horizontal layer subjected to a solutal gradient. In the latter case M and R should be 
replaced respectively by E and R,. (a) BBnard convection with a deformable interface: first-order 
correction in the crispation number (C + 0) to the Rayleigh number versus Marangoni number. 
For a given value of M ,  the actual Rayleigh number provided by energy theory is given by the 
corresponding value in (a )  added to R%'. A similar result holds for (isothermal) solutal convection 
when R is replaced by R,, M by E ,  and C by LC. Note that R is negative for M > 56.77 and R > 669 
for negative Marangoni numbers. 
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FIQURE 3. (a) Zero-gravity BBnard convection in a two-component fluid layer when the thermal 
and solutal (elasticity) Marangoni numbers compete or cooperate to induce interfacial instability. 
Solid and broken lines correspond respectively to energy and linear stability analyses. The dotted 
parts of the solid line correspond to overstability. The onset of overstability depends on Prandtl 
and Lewis numbers. For illustration, here we have chosen P = 10 and L = As in figure 2 (a) 
the region between the two lines corresponds to the possibility of subcritical instability. ( 6 )  
Zero-gravity BBnard convection in a binary mixture with a deformable interface : first-order 
corrections in the crispation number (C $; 0) to the thermal Marangoni number versus solutal 
Marangoni (elasticity) number. For a given value of E ,  the actual thermal Marangoni number 
provided by energy theory is given by the corresponding value in (a )  added to M(')C. 
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(21 c )  

J X  

where w, = aw/dz, and the superscript (0)  indicates the solution of the zeroth-order 
problem. Quantities like M and E without superscript refer to values a t  C = 0. The 
choice of any of the above given parameters mean that when we focus on R(l), say, 
we keep fixed all the other parameters in the problem. 

For simplicity, we now illustrate the results found in a series of relevant cases. 
Figure 2 ( a )  provides sufficient conditions for stability (energy theory) and sufficient 
conditions for instability (linear theory), thus delineating the region of possible 
subcritical instability. Presumably when the layer is heated from above ( R  < 0 )  the 
possibility of subcritical instability is enhanced owing to the lack of symmetry in 
the thermal boundary conditions, as the bottom plate is considered a good heat 
conductor, whereas the heat flux is fixed a t  the upper surface, which is also kept level. 
I n  thermal convection the standard case referes to the region of positive Marangoni 
and Rayleigh numbers, as the sign of the Marangoni number generally follows the 
sign of the Rayleigh number (for exceptional cases see e.g. Guyon & Pantaloni 1980). 
However, with solutal convection, regions of opposite signs of E and R, are easily 
accessible (Sclrensen 1979). Thus, the results depicted in figure 2 also correspond to 
solutal convection when R and M are replaced by R, and E respectively. 

The effect of interface deformation, to  first order in the crispation number, is 
described in figure 2 (b ) ,  which shows the solution (21 a). The novelty of our results 
with respect to those reported by Davis & Homsy (1980) is twofold. (i) we have 
extended their predictions to  negative Rayleigh or Marangoni numbers; when M is 
positive there is some stabilization of the fluid layer relative to the case of a planar 
interface, i.e. the region of absolute stability of the motionless steady state is enlarged 
(for M > 56.77 we have negative Rayleigh numbers). The opposite behaviour appears 
for negative Marangoni numbers where R is positive and greater than 669, which is 
the critical Rayleigh number for the onset of convective instability in the absence 
of interfacial tractions (M = 0).  At M = 0 both linear and energy theory (figure 2a) 
provide the same prediction, and there is no subcritical instability. (ii) We have 
improved the numerical estimates given by Davis & Homsy (1980) in the region 
0 < M < 56.77 and R > 0. A cross-check of our computational scheme has been done 
by performing a self-consistent computation of h (Lebon & PBrez Garcia 1980) : 

S, e(o)wp) 
(22) 

Figure 3 ( a )  refers to  the zeroth-order approximation in the crispation number in 
the case of thermosolutal capillary instability in the absence of gravity. Energy 
stability corrections to first-order approximation in the crispation number are given 
in figure 3 ( b ) .  These results are made more complete with figure 4, which shows the 
role played by the Rayleigh numbers. Figure 3 ( a )  should be of relevance to 

= R(O) - M(O) 
(($O)w(O)). 
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I 

FIGURE 4. M and E energy stability lines for various values of the thermal and solutal Rayleigh 
numbers in the absence of interface deformation (C = 0): (a)  R = R, = -100; ( b )  R = R, = 0; ( e )  
R = -R,  = 100; ( d )  R = R, = 100. 

experiments aboard space vessels. Linear theory (Castillo & Velarde 1980) predicts 
regions of exchange of stabilities and overstability respectively. The latter depend 
on Prandtl and Lewis numbers (for illustration we have chosen P = 10 and L = lop2). 
The energy stability lines, however, do not depend on any of these parameters. It 
appears that, for large negative values of either Marangoni number, the region of 
expected subcritical instability is rather wide. There is symmetry with respect to the 
bisector of quadrant M > 0 ,  E > 0.  In this quadrant only there is a tight and perfect 
coupling between the two Marangoni numbers, as the critical wavenumber is the same 
all along the neutral stability curve a, = 2.24, in contradistinction to the case 
depicted in figure 2 ( a ) ,  where the critical wavenumber is not the same along the 
line (see also Nield 1964). In accordance with the energy theory the stability 
curve is a straight line, and along it M +  E = M,(E = 0) = Ec(M = 0). Moreover 
A + h  = 953.52, i.e. the sum of the two linking parameters remains constant in the 
quadrant M > 0,  E > 0.  On the other hand all, over the three relevant quadrants 
of the problem, h / A  = IM/EI. 

Figure 3 ( b )  provides the values of M(l ) ,  (Zlc) ,  for given values of E and several 
values of the Lewis number. Note that a similar result appears when E is changed 
into M ,  M(’) into E(’)L, and L into L-l. Note also the relevance, albeit quantitatively 
minor, played by the Lewis number, i.e. by the role of the impurity incorporated 
through the ratio of the two diffusivities involved in the thermosolutal dynamics. 

Figure 4 shows the influence of the two Rayleigh numbers for various illustrative 
values. It appears that when R + R, = 0 there is no appreciable change in the stability 
line for the quadrant M > 0 and E > 0 .  When R+ R, is positive the energy stability 
line is slightly lowered, whereas for negative values of R+ Rs there is a relative 
stabilization with respect to the case of vanishing gravity. 
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Lastly, as a byproduct of our energy theory we have also obtained the stability 
line in the absence of any interfacial traction (stress-free boundary conditions). Such 
a state can be achieved with the addition of surface-active agents along the open 
interface (Block 1956; S~lrensen 1979). For this specific case our results reproduce the 
earlier finding reported by Shir & Joseph (1968). 

The authors acknowledge fruitful discussions with S. H. Davis and G. M. Homsy. 
This work has been sponsored by Comisi6n Asesora de Investigacion Cientifica y 
TBcnica (Spain). 
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